martes, 23 de noviembre de 2021

Aplicaciones de la Derivada 2: Teorema del Valor Medio

    ¿Pueden existir funciones complicadas cuyas derivadas siempre sean igual a cero? Si dos funciones tienen la misma derivada sobre un intervalo determinado ¿Cómo estas están relacionadas? Antes de que llegue al final de esta publicación sabrá la respuesta a estas dos preguntas. Empezaremos analizando algo conocido el teorema de Rolle. Este postula lo siguiente:

  • Supongamos que y = f(x) es continua en cada punto del intervalo cerrado [a, b] y diferenciable en cada punto de su interior (a, b). si f(a) = f(b), entonces hay al menos un número c en (a, b) donde f’(c) = 0.

    Podemos confirmar este teorema usando el teorema de la continuidad presentado en la pasada publicación. En este vimos que una función continua podemos encontrar un máximo o mínimo absoluto en tres escenarios posibles. 

  1. puntos interiores donde ƒ' = 0.
  2. puntos interiores donde ƒ' es indefinido.
  3. puntos finales del dominio de ƒ.

    Como f es diferenciable en cada punto interior por definición podemos excluir el escenario 2 dejándonos así el escenario 1 y 3.

    En el caso del escenario 1 si un máximo o mínimo ocurre en el punto c entre a y b entonces f’(c) = 0 por lo tanto hemos encontrado un punto que valida el teorema de Rolle.

    Si tanto el máximo absoluto como el mínimo absoluto ocurren en los extremos entonces debido a que f(a) = f(b) se da el caso que f es una función constante para cada x (a, b), por lo tanto f’(x) = 0 y el punto c se puede tomar en cualquier punto interior (a, b) cumpliendo así el escenario 3. Esto forma nuestro primer corolario.

    Corolario 1. Si f’(x) = 0 en cada punto x de un intervalo abierto (a, b), entonces f(x) = C para todas x (a, b), donde C es una constante.

    ¿Pueden existir funciones complicadas cuyas derivadas siempre sean igual a cero? La respuesta según este corolario es que solo las funciones constantes tienen una derivada igual a cero.

    La prueba de este teorema es esencial ya que si esta falla aunque sea en un punto su grafica puede no tener una tangente horizontal, pero ¿por qué es importante tener esta tangente? De esto es que trata el teorema del valor medio.

    El Teorema del Valor Medio es una propiedad de las funciones derivables en un intervalo. Considerado como el teorema más importante del cálculo. Una forma mas restringida de este fue demostrada por Michel Rolle en 1691 para polinomios sin la técnica de cálculos y hoy es conocida como el teorema de Rolle que acabamos de comprobar. El teorema del valor medio postula lo siguiente.

  • Si f es una función continua en el intervalo cerrado [a, b] y diferenciable en el intervalo abierto (a, b) tal que la tangente en el punto c es paralela a la recta secante en los puntos (a, f(a)) y (b, f(b)), en lenguaje geométrico es fácil de formular y entender como se muestra a continuación.


    Prueba. imaginamos el gráfico f y dibujamos una línea a través de los puntos A (a, f(a)) y B (b, f(b)). La función de la línea la podemos representar usando la ecuación de la pendiente.


    La diferencia vertical entre las gráficas f y g la representamos con la función h(x).


    La función h satisface la hipótesis del teorema de Rolle en [a, b]; es continua en [a, b] y diferenciable en (a, b) pues f y g lo son. También h(a) = h(b) = 0 por lo tanto existe un h’(c) = 0 en un punto c (a, b). Este es el punto que deseamos para la ecuación, para ello vamos a diferenciar ambos lados con respecto a x y luego establecer x = c.

Cuando h’(c) = 0

    Esto también confirma que el teorema de Rolle es una versión mas restringida de lo que es el teorema del valor medio.

    Ejemplo. La función f(x) = x2 es continua de 0x2 y diferenciable en 0 < x < 2 como f (0) = 0 y f (2) = 4, el teorema del valor medio nos dice que existe un punto c en este intervalo donde la derivada f’(x) = 2x, debe tener un valor de (4-0) / (2-0) = 2. En este caso encontramos el valor de c resolviendo la ecuación 2c = 2 que nos da c = 1.

    ¿Qué tal si queremos saber la relación entre dos funciones que tienen la misma derivada en un intervalo determinado?

    Existe un segundo corolario que nos dice que sus valores se diferencian por una constante.

    Corolario 2. Si f’(x) = g’(x) en cada punto x de un intervalo abierto (a, b), entonces existe una constante C tal que f(x) = g(x) + C para todas x (a, b). Eso es f – g es una función constante en (a, b).

    Dos funciones pueden tener la misma derivada pero no necesariamente ser iguales. Estas difieren en una constante.

    El teorema del valor medio es de mucha importancia para la siguiente sección de calculo que trataremos. También ha sido utilizada para comprobar las leyes logarítmicas y exponenciales. Aquí debajo les presentare un ejemplo de estas y con esa idea ustedes pueden intentar probar las demás leyes.

    Prueba que ln(bx) = ln(b) + ln(x).

    El argumento comienza observando que ln(b) y ln(x) tienen la misma derivada.

    Acorde a nuestro segundo corolario las funciones difieren por una constante, lo que significa que

    ya que esta ecuación se mantiene para todos los valores positivos de x, debe mantenerse para x = 1. Por lo tanto,

    Ahora podemos sustituir y ver 


    Comprueba que {e^{{x_1}}} \cdot {e^{{x_2}}} = {e^{{x_1} + {x_2}}}

    Sea y1 = ex1 y y2 = ex2, entonces tomando el logaritmo de ambos lados.

x1 = lny1 y x2 = lny2

x1+x2 = lny1+lny2 

    Aplicando la regla de multiplicación de logaritmos

x1+x2 = lny1y2

    Exponenciándolos nuevamente

ex1+x2 = e lny1y2

= y1y2 

    Sustituyendo

ex1+x2 = ex1.ex2

 

Definición

  • Corolario: Es una proposición que no necesita ser verificada, ya que se deduce muy fácilmente de lo demostrado.

Ahora pueden seguirnos y contactarnos a través de Facebook, Twitter y correo electrónico.

 

 

También pueden seguir nuestro otro blog si les interesa aprender sobre el interesante mundo de la física. 

 

No hay comentarios.:

Publicar un comentario